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Abstract. A Fock space formulation of the intermediate Hamiltonian approach 
is derived by introducing shift operators in the equations determining effective 
Hamiltonians in Fock space. A non-hermitian intermediate Hamiltonian is 
constructed from the Fock space Bloch equation. An alternative derivation, 
based on a similarity transformation expression, is presented providing access to 
hermitian intermediate Hamiltonians. In a pilot application, the potential curves 
of the two lowest 1Z+ states of the H2 molecule are calculated demonstrating the 
applicability of the scheme. 

I. Introduction 

It has been clear for some time that ab initio calculations of excited atomic and 
molecular states using effective Hamiltonian (Hen-) theories (for review articles 
see e.g. [l-5]) suffer from a convergence problem [6] -commonly termed as 
"intruder states problem"-qui te  independent of which specific formalism is 
applied. In applications of the theory of effective Hamiltonians in Fock space 
[7-10] we have encountered these difficultiestoo, and as a first step we tried to 
circumvent the convergence problems by using incomplete model spaces (IMSs) 
[11-14] instead of complete model spaces (CMSs). This has been successful to 
some extent [13, 14], especially for atomic excited states [ 14] (for results of other 
groups using IMSs on this line, see [15, 16]), but for potential energy surfaces 
(PESs) of excited molecular states the situation is still unsatisfactory. Even if 
basis sets of good quality are applied and if the whole potential curve is to be 
calculated, for diatomic molecules an incomplete model space usually has to be 
changed somewhere on the potential curve because of convergence difficulties, at 
least for states of the highest symmetry. This problem was also encountered by 
Kaldor [17] in a recent investigation of the Li2 molecule applying a specific form 
of the open-shell coupled-cluster method (reviewed in [ 1, 5]). For tri and higher 
atomic molecules those convergence problems become more and more pro- 
nounced. 

Malrieu et al. [8] have proposed overcoming the intruder states problem by 
modifying the Heir formalism [19, 20, 4] to a so-called "intermediate Hamilto- 
nian" approach. In this scheme, formulated in Hilbert space (for a fixed particle 
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number), the model space (MS) is divided into two subspaces, the "main" and 
the "intermediate" MS, and only those eigenvalues of the intermediate Hamilto- 
nian which are associated with the main MS ("main eigenvalues" for short), are 
required to correspond to eigenvalues of the true Hamiltonian H. The eigen- 
values associated with the intermediate MS ("intermediate eigenvalues" for 
short) are, in principle, arbitrary but are determined in a way that avoids 
intruder problems. Malrieu et al. [18] have derived a perturbation expansion for 
their intermediate Hamiltonian containing a shift parameter, and the scheme has 
been applied in this form to the Li 2 molecule [21] and the Be atom [22]. Very 
recently, transition moments have been calculated using this scheme [23], and the 
theory has been further developed by Heully et al. [24]. 

An intermediate Hamiltonian scheme in Fock space, without shift parame- 
ters, based on the open-shell coupled-cluster formalism (see e.g. [1, 5]), has been 
proposed by Mukherjee [25] some time ago. Another suggestion of Mukherjee 
[26] has been to add a shift operator H~ to the zeroth order Hamiltonian Ho 
given by the usual decomposition 

H =  Ho + V (1.1) 

The purpose of the shift operator H~) which contains a projector onto the 
intermediate MS, is to shift down the intermediate eigenvalues thus generating a 
sufficient energy gap between the MS and the virtual space. Due to the nature of 
the projector, this scheme can be applied only in a Hilbert space for a fixed 
particle number. There is, nevertheless, some relationship between this idea and 
the Fock spaceformalisms in the present work. 

The derivatibns of the intermediate Hamiltonian methods mentioned above 
have in common that the (generalized) Bloch equation is manipulated following 
a principle that might be called the "concept of compatible manipulations". By 
this we mean that for the "main eigenvalues" the manipulations, e.g. the 
introduction of additional terms, should not destroy the equivalence of the 
operator equation with the Schr6dinger equation. This general concept will also 
be followed in the present work. 

The scheme for an intermediate Hamiltonian in Fock space presented here is 
formulated in the framework of the "effective Hamiltonians in Fock space" 
formalism as introduced by Kutzelnigg [7-10]. We briefly review the notation to 
be used later on, for detailed definitions see [7-12]. Using a compact tensor 
notation, an arbitrary spin-conserving operator A containing k-particle compo- 
nents Ak is written in second quantization as [7, 10] 

1 .4 PQI~RS A = A s + A I + A 2 +  " " = A s + A ~ E ° e + ~ R s , _ , e Q +  " "  (1.2) 

with the Einstein summation convention implied and P, Q , . . .  representing 
arbitrary spinfree orbitals. In this notation, A s is a scalar part (a multiple of the 
Fock space unit operator), the E~, Rs EeQ . . . .  are spinfree one-body, two- 
body . . . .  excitation or substitution operators, and their coefficients 

A Rs . . . .  are spinfree matrix elements defined as [7, 9, 10] A ~ ,  PQ 

A ~ = ( Q I A , I P )  

A ~ = (RSIA2 IPQ) = (R(1 ) s (2 ) IA2(  1, 2 ) Ie (1)Q(2)  ) 

: (1.3) 

The spins ~ and fl are summed over, in the substitution operators, in such a way 
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that spin is conserved in each electron coordinate [7, 9, 10] 

# 
E~= Z a*Q.ae, (=:aQ~ae,=:aQeg) 

rl=~ 

# 
~ Rq S~t~Q~"~Pq ( = : a R n a s ~ a Q ~ a P , 7 - - ' ~  PqQ~J 

~,~=~ 

: (1.4) 

with aq* and ap being the usual creation and annihilation operators for spin 
orbitals. The particular spin summation in Eqs. (1.4) takes care of the original 
spin dependency of the matrix elements built from spin orbitals. 

The operator space is divided into various sets, and aiming at being as general 
as possible, we use the definitions appropriate for both the CMS and the IMS case 
[7-12]: 'Diagonal' operators (index 'D') cannot excite from the MS, but 
'Non-diagonal' ones (index 'N') can do so. 'Closed' operators (index 'C') act on 
MS functions, and map them only onto MS functions again. The category 'N' 
consists essentially of operators of 'B'-type ('closed from Below') being able to 
excite from the MS, and for a unitary ansatz [7, 8], also of operators of 'A'-type 
('closed from Above') which act in the opposite direction. Generally, in this 
classification a hierarchy principle is implicit: 'N' has the highest priority, followed 
by 'C'. Hence, the category 'D' comprises operators of the following types: 
operators of type 'C', and in non-unitary formalisms also of type 'A', and 
additionally all remaining operators not in 'N', which are termed 'Open' (index 
'O'). 'O' operators always give zero if applied to MS vectors from the left, as well 
as to their conjugates from the right. Note that in other formalisms [1, 5] 'B' 
operators are called 'open', and '0 '  operators do not appear. Scalars, like the 
Fock space unit operator or vacuum terms, belong in principle to the separate 
category of scalars [8], but for convenience we mostly subsume them in the 'C' 
category. 

Following Kutzelnigg [7-10] the wave operator and the effective or interme- 
diate Hamiltonian in Fock space are denoted as W and L c respectively, where L c 
is the closed part of the diagonal "energy operator" L [7-10]. Similar to H, the 
operator L is decomposed into 

L = H o + A L  (1.5) 

The operator classification briefly described above is related to the (full) MS, 
but for the intermediate Hamiltonian schemes we will additionally need the same 
kind of operator classification but related only to the main MS. To avoid 
subindexing of indices, this classification is simply indicated by adding an index 
m to the indices introduced above, hence an operator A closed with respect to the 
main MS is denoted as Ao, ,. For functions and scalars, the index m will be 
simultaneously used as counting index. 

If we use the term "model space" we do not mean only the space spanned by 
the selected active configuration state functions for a specific particle number n, 
but also for other particle numbers as outlined in [7-12]. Naturally the same holds 
for the complementary space, called the virtual space in what follows, and for the 
main and intermediate MS. However, we would like to stress that the schemes 
presented in this work are not only applicable in Fock space, but also in 
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Hilbert space, be it by projection of the equations to a particular n-particle 
Hilbert space or via an interpretation of the operators as pure Hilbert space 
operators. 

2. Construction of an intermediate Hamiltonian in Fock space 
from the Bloch equation 

In this paper a Fock space intermediate Hamiltonian scheme having the follow- 
ing characteristics is presented: 

(i) individual orbital energy shifts are applied to ensure that energy denomina- 
tors are always sufficiently large 

(ii) the feature of particle-number independence is conserved 

(iii) connectivity can probably be maintained. 

To reach goal (i) we shall enlarge the energy denominators related to the 
intermediate MS. Hence, depending on the energy range of the main MS, the 
intermediate MS has to be chosen sufficiently large to act as a "buffer space" 
between the main MS and the virtual space. Point (ii) can be fulfilled by 
formulating all equations strictly in Fock space in the sense of  [7-12] which will 
also help to realize item (iii). Connectivity will not be discussed here in detail, 
proofs for it have to be given elsewhere. 

Shifts are most easily introduced starting from the (generalized) Fock space 
Bloch equation [7, 8] 

H W =  WL, L = LD (2.1) 

with some ansatz for the wave operator generally resulting in a non-hermitian 
Lb. The model space to which the index 'D'  refers, may be complete or 
incomplete (CMS or IMS case). 

From Eq. (2.1), we first generate a new energy operator /2  via a transforma- 
tion with a Fock space operator B such that L is 'diagonal with respect to the 
main MS' indicated by the double index 'Din': 

H W B  = W B B - 1 L B  = W B L  L = ~Dm (2.2) 

(Note that the unit operator is an essential part of B, as it is for any similarity 
transformation.) If, as mentioned, the unit operator is for convenience subsumed 
in the 'C'  category, it is even possible to restrict B to be a closed operator 
because only operators that couple the main and the intermediate MS have to be 
removed by B, and these operators are parts of  L c only. Even if B is constructed 
via an exponential(-like) expansion with a closed operator as exponent, B will 
still be closed for a CMS since there the "multiplication rule", that a product of 
two closed operators results in a closed operator again ( 'C x C = C') [8], holds. 
This also ensures that B -1 is closed. For an IMS [11, 12] that rule is valid only 
for operators of a fixed particle rank, otherwise one has to relax the rule to 
'C x C = D'  (see below). We will see, however, that non-closed diagonal compo- 
nents in B do not cause problems. Hence, if necessary, one could extend B to 
B = BD. 

It would not be possible to restrict B to B = B  c (or B =BD) if, in the 
decoupling expression B - 1 L B ,  non-diagonal terms could appear belonging to 
both the N'  and Nm sets. To have the condition /2 = JLDm fulfilled, those 
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operators would have to be additionally removed by B. For the CMS case the 
multiplication rule 'D × D = D'  [8] was formulated, which ensures in this case 
that the decoupling expression is diagonal, since the three operators in the 
product are diagonal. For the IMS case [11, 12] that multiplication rule was not 
explicitly stated, but, from the general definition that a diagonal operator cannot 
excite any MS function to a virtual function, we can easily conclude that a 
product of two diagonal operators cannot do this either. Hence that multiplica- 
tion rule is valid for the IMS case too, and we have the result that generally no 
'N' terms can appear in the decoupling expression. Put differentl~y, the condition 
L = LD is preserved if B is chosen to be a closed operator; L = LD holds as well. 

The right hand side (r.h.s.) eigenfunctions of the new effective Hamiltonian 
Lcm generated by Eq. (2.2) are spanned by basis functions of the main MS 
("main functions") only, and it is compatible with conserving the pertinent 
eigenvalues (the only eigenvalues in which we are interested) to add operators in 
Eq. (2.2) that give zero when acting on main functions. Introducing a shift 
operator D with this property, one of the (in principle) infinite possibilities to 
modify Eq. (22) is (with W = WB) 

H W  = WJ~ + X N B D  , £ = LDm (2.3) 

In one possible choice, XN is the non-diagonal part of W, i.e. 

X N = W N (2.4a) 

For theories using a cluster expansion [1, 5] for W, e.g. 

W = exp S, S = SN (2.4b) 

in coupled cluster theory [1, 5, 7-13] or 

W = e x p a ,  O=aN,  O * = - - a  (2.4C) 

in the separable unitary ansatz as advocated by Kutzelnigg [7-13], it is conve- 
nient to define XN in terms of these cluster operators, i.e. 

X N = S or XN = XB = as (2.4d) 

respectively. In Eq. (2.3) and in the following, we always demand that XN is 
connected with D - directly or through B - (and, for safety, that B is connected 
with D), because the idea is that the additional term will finally contribute to the 
commutator of X N with H0. The insertion of the operator B between X u and D 
in Eq. (2.3) is not really needed, the motivations for inserting it will be given 
below. In any case, we would like to stress the flexibility in the choice of the shift 
term. It is, e.g., possible to restrict XN to certain parts of WN, S, a etc., or to 
restrict the whole shift term, e.g., to (XNBD)N. This variability will help to adapt 
the formalism to the peculiarities of a specific application. 

By introducing the extra-term in Eq. (2.3), it is intended to lower the energies 
of orbitals appearing in "intermediate functions", i.e. functions spanning the 
intermediate MS, and therefore we define D to be a shift operator acting on 
intermediate functions. In particular we choose D to be of the "index-diagonal" 
form 

l x r  ( 2 . 5 )  D = D x  Ex  +~DxvExY + "'" 

where X, XY, . . . .  are (sets of) active orbitals appearing in intermediate 
functions, but not in main functions. Obviously, demanding D to be a Fock 
space operator introduces the restriction in the choice of main and intermediate 
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MS that the two subspaces have to differ in the occupation of certain orbitals or 
orbital sets. In Hilbert space, or if one likes to work with a projection of the 
Fock space equations to a particular n-particle Hilbert space, such a restriction 
is not necessary since D can be simply defined to project onto the intermediate 
MS. However, in practice, it should normally be no problem to construct a main 
and intermediate MS accordingly. The shift operator D is required to be of low 
particle rank, since its purpose is to help solving the k-particle operator 
equations, usually with k = 1, 2, 3, 4 (plus n-particle-m-hole equations if a core 
is correlated), where k = 2 is normally of central importance. Hence, in the 
intermediate MS, energetically high lying orbitals or orbital pairs acted upon by 
D, which are unoccupied or only singly occupied in the main MS, should be 
populated. On the contrary, it is often favourable if some low lying orbitals are 
always doubly or at least singly occupied in the main MS. All of these conditions 
can probably be best realized by choosing an appropriate IMS as the full MS, 
whereas it might be difficult to subdivide a CMS using those criteria. It may be 
helpful to additionally use shift operators defined in a complementary way, i.e. 
"acting on vacancies". The operator / 3 z ( 1 - E  z zz + E z z ) ,  e.g., acts only on 
functions in which the orbital Z is unoccupied. Summarizing it can be said that 
applications of this Fock space formalism will often require a somewhat larger 
MS than it would be necessary if projectors were used. 

To demonstrate explicitly that the shift term in Eq. (2.3) - to be classified as 
an 'Om'  or 'Am'  term - does not change the main MS eigenvalues, we apply Eq. 
(2.3) to an eigenfunction ~,~ of Lc,, : 

(2.6) 

This shows that Eq. (2.3) is still eckuivalent to the Schr6dinger equation for main 
eigenvalues, with wave functions W~m. However, one should realize that for the 
manipulated Eq. (2.3) to hold, the matrix elements of all variable operators will 
generally have to change. Hence, in principle, for these operators a different 
notation (like I~',/S') should have been used from Eq. (2.3) onwards, but for 
simplicity we will continue to use the old one. 

Now we recover an equation for W and L similar to the Bloch Eq. (2.1) by 
multiplying Eq. (2.3) with B - '  from the r.h.s.: 

H W  = WL + XNBDB -1, L = LD (2.7) 

This remarkably simple equation generates the intermediate Hamiltonian L c as 
used in this work. Equation (2.7) might be referred to as the "shifted Bloch 
equation". 

The (closed) term BDB -1 is hoped to be similar to D in structure, whereas 
D B - '  is probably quite different, and this is the main reason why B was inserted 
into the shift term in Eq. (2.3). The other reason is that B D B - '  may be nearly 
hermitian if the unshifted L c  is (if it could be calculated), and hence it is hoped 
that the specific form of the shift term in Eq. (2.7) will prevent the intermediate 
Hamiltonian from becoming strongly non-hermitian. 

Since, at least for a CMS, the shift term is purely of 'N' type (any explicit 'D'  
component would be more or less compensated through the back-substitution of 
L), Eq. (2.7) recovers the usual expressions for ALc in the CMS case, e.g. in 
intermediate normalization [7, 8] 

A L c =  ( V W ) c  (2.8) 
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whereas the equation that determines XN now reads 

I-It"N, H0] + )(N ° = (VW)N - ( W  AL)N -- (XN(BDB -1 - O)) u (2.9) 

The internal structure of the terms in Eq. (2.9) is not indicated, since that is 
determined by the specific ansatz chosen for W. The "simple shift term" XND on 
the 1.h.s. of Eq. (2.9) was extracted from the shift term in Eq. (2.7), leaving a 
"shift correction term" placed as the last term on the r.h.s, of Eq. (2.9). Note 
that the shift operator D appears only on the r.h.s, of XN. 

The specific intermediate Hamiltonian method defined by Eqs. (2.7) or 
(2.8, 9) will be referred to as "scheme a"  in this work. Equation (2.9) may be 
looked upon as containing simple shifts that provide sufficiently large energy 
denominators, and a shift correction term which corrects the resulting errors 
with respect to those energies that are not directly affected by the shifts. Hence 
a simple approximation to scheme a consists in keeping only the simple shift 
term, i.e. dropping the shift correction term on the r.h.s, of Eq. (2.9): 

[XN, O0] + XND --- (VW)N -- ( W  AL)N (2.10) 

This approximation, with the expression for AL c unchanged, is denoted as 
"scheme b", and both schemes a and b are tested in the numerical application. 

Obviously, in the solution of Eqs. (2.8, 9) the critical point is the determina- 
tion of the B into which the intruder problem has been absorbed. B is conve- 
niently calculated from the decoupling expression B-ILB ,  already discussed 
above, using the condition 

(B-1LB)um = ((B-1LB)c)urn = 0 (2.11) 

to which essentially only L c contributes. In constructing B from Eq. (2.11) 
perturbation theory or methods related to it generally cannot be used since a 
helpful energy gap between main and intermediate MS cannot be expected to 
exist. Instead, numerically stable iterative methods have to be applied, which 
should be possible because the MS is assumed to be sufficiently small. Determin- 
ing B iteratively generally implies that Lc  will be determined iteratively, too, and 
in every iteration cycle the operators W, L c and the pertinent B have to be 
calculated until selfconsistency is reached. 

The problem of arriving at a connected Lc  will not be specifically addressed 
here, since this is a trivial point for the two-electron example presented below. In 
this paragraph, however, we will make at least a few remarks on this topic to 
indicate how connectedness of Lc  can be achieved and proved in a transparent 
way using the Fock space methodology developed so far [7-12]. Though the 
shift operator D is not directly a part of H or L, it has a position in the equation 
for XN which makes it look like a part of Lc. Hence, there is some reason to 
demand D to be additively separable like H or L, so that according to the 
separability theorem as advocated by Kutzelnigg [7, 10], D can be considered to 
be connected. In practice, additive separability of D can simply be realized if one 
defines the coefficients in D to approach some constant asymptotic values for any 
dissociative coordinate. Furthermore, it must be possible to compose these 
values additively from reasonable shifts for the separate systems calculated 
individually. Then, to achieve multiplicative separability of W, XN may be 
chosen to be an additively separable cluster operator connected with D. Finally, 
what is left to be considered is the connectedness of the expression BDB-~ in Eq. 
(2.9). If we choose an exponential(-like) ansatz for B, in the same way as is 
usually done for W [ 1, 5, 7-13], it should be possible to make this expression 
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connected and hence to arrive at connected-diagram expansions for the cluster 
operator XN and the intermediate Hamiltonian Lc.  It will become more apparent 
in the next section that B plays a role similar to W. 

The shifts in Eqs. (2.7, 9) cannot usually be chosen as fixed on a potential 
energy surface (PES), because for PESs of excited states the intruder problem is 
aggravated by the fact that generally, in different areas of the PES, different MS 
configurations get intruded to a variable extent (by possibly different virtual 
states). In principle, this still could simply be circumvented by choosing the MS 
to be sufficiently large and always shifting all the configurations that get intruded 
somewhere. In applications, however, there are practical limitations to the size of 
the MS, and experience has shown that usually, somewhere on the PES, a few of 
the shifted configurations are dominant in the states of interest (and hence 
should not be shifted). We suggest overcoming this difficulty by switching the 
various shifts on and off as needed, and furthermore to do this continuously in 
order to avoid kinks in the PES. A main advantage of this intermediate 
Hamiltonian formalism is that the MS, if appropriately chosen, does not need to 
be changed in course of a PES calculation, as e.g. had to be done in [17] for the 
two lowest Li2 IS + states causing slight discontinuities in their potential curves. 

3. Construction of intermediate Hamiltonians via similarity transformations 
(non-unitary and unitary) 

Since the derivation of the intermediate Hamiltonian scheme via the Bloch 
equation required a decoupling transformation in the MS (by the operator 
B = Bc) ,  it is now clear how the same results can be obtained via a two step 
similarity transformation, i.e., defining L at the outset by a similarity transforma- 
tion [7, 8, 10], instead of using the Bloch equation for the definition of L. This is 
of general theoretical interest, and had been an unsolved problem. This starting 
point is even mandatory for the formulation of an intermediate Hamiltonian 
scheme in the framework of the unitary ansatz as proposed by Kutzelnigg 
[7, 8, 10], which is essentially based on an unitary transformation expression 
defining L (see below). 

Starting from the transformation in Fock space that creates the decoupled 
energy operator L [7, 8, 10] 

W - 1 H W  = L, L = LD (3.1) 

a second similarity transformation, using B = Bc,  is applied to construct the 
operator L with the properties as described in Sect. 2: 

B - 1 W - I H W B = B - 1 L B = L ,  L = L D ,  . (3.2) 

Using the arguments from the previous section, it is compatible with conserving 
the eigenvalues of/Scm if one adds an operator to Eq. (3.2) which gives zero 
when acting on main functions. Put in a different way, the conditions 

( IYg- l HlTg)Cm = Lc,,, (3.3a) 

( VIZ-1HI/~Z)N m = 0  (3.3b) 

(with if" = WB)  should be preserved by this manipulation. 
In order to arrive at the same result as in the previous section, we now add 

a convenient operator product, with the shift operator D = Do,,, = Dc  at the 
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right end which guarantees that the product is of type 'Om' or 'Am': 

B - ~ W - 1 H W B = f f ,  + B - ' W - ~ X N  BD, ff~=LD,, (3.4) 

Multiplication of Eq. (3.4) by WB from the left and B -1 from the right finally 
reproduces Eq. (2.9) 

H W  = WL + XNBDB -1, L = L D (3.5) 

This result demonstrates that scheme a can also be derived from an effective 
Hamiltonian that is defined by a similarity transformation. Below we will 
proceed in this way for the construction of hermitian intermediate Hamiltonians. 
However, in contrast to the situation for effective Hamiltonians, it does not seem 
to be possible to define an intermediate Hamiltonian by a pure similarity 
transformation expression without additional terms. 

In this work, we do not present an application of a hermitian intermediate 
Hamiltonian, but we at least want to give examples of such intermediate 
Hamiltonians constructed from an unitary ansatz. The derivation is now based 
on the unitary transformation [7, 8, 10] 

W * H W =  L, L = LD, wt  = W -1 (3.6) 

that can, e.g., be realized using the separable unitary ansatz [7, 8, 10] 

W=expo- ,  a - - - a  t , ~=c r  N (3.7) 

(X  N = X B = o'B in this case). The main MS is now decoupled applying a 
transformation with a unitary Fock space operator B = B c (e.g. B =ex p  1:, 
Ij ~ --"Ct)~ 

B t W ' H W B  = B t L B  = L, /~ =/~'D,. (3.8) 

As before, we add operators to /S  that give zero when applied to main functions. 
To preserve the hermiticity o f / S  and L, we have to add a shift term plus its 
hermitian conjugate, which restricts the shift term to be of  type 'Ore'. The 
hermitian conjugate term causes problem in the IMS case, hence we first restrict 
the discussion to the simpler CMS case where 'A' type operators always give 
zero when applied to main (and intermediate) functions. Then one possibility is 

B t W t H W B  = JL + B tXBBD + DB*X~B, #, = JgDm (3.9) 

(D = D* by definition). Here, with respect to the full MS, the first shift term is 
of type 'B' and the second of  type 'A'. Back-transformation of  Eq. (3.9) yields 
the equation 

W t H W  = L + XsBDB* + BDB~X~, L = L D (3.10) 

defining a hermitian intermediate Hamiltonian Lc.  With 

D' = BDB t (3.11) 

the pertinent shifted Bloch equation is 

H W  = WL + WXBD' + WD'X~,  L = LD (3.12) 

Equally, one could start from Eq. (3.12) going backwards to Eq. (3.10) or (3.9). 
In the term W X s D '  of Eq. (3.12), the unpleasant part Wo of the operator W 

contributes, and if one wishes to avoid this, the alternative, somewhat more 
involved ansatz 

B * W * H W B = E + B m ( W m X s B D ) B + ( D B t X * B W ) A B ,  /~ = iD,, (3.13) 



178 S. Koch 

may be used for a CMS instead of Eq. (3.9). This leads to 

W * H W = L  +(W*X,D ' ) ,+(D 'X~W)A,  L = L D  (3.14) 

defining another hermitian intermediate Hamiltonian L o  Using the decomposi- 
tion 

(W*XnD'), = W*XBD' 7- (WtXBD')c, o, A (3.15) 

we can write the pertinent shifted Bloch equation as 

H W =  WL + X s D ' -  W(W*XBD!)c,o,,~ - W(D'X~W),~, L = L o  (3.16) 

In the relevant components of Eq. (3.16), i.e. the 'B' and 'C'  parts, W o does not 
contribute. 

In the IMS case, equations analogous to those for the CMS case can be used 
if X,  is restricted to X,c  [11, 12], i.e. to that kind of operator that only excites 
from the IMS to the inactive space that is the complementary space of the CMS 
in which the IMS is embedded. If  one wants to include more components of XN 
the following ansatz may be used: 

B*W*HWB =ff.+(XnD)o m +(DX*,)Om, E=LDm (3.17) 

The operator B between X and D has been dropped here since its insertion is 
probably not of much use in a hermitian formalism. Equation (3.17) is applica- 
ble at least in the case where the IMS is isolated [11], but general IMSs [12] can 
also be included if the non-diagonal ' + '  operators [12, 13] typical for general 
IMSs are symmetrically distributed to the 'B' and 'A' operator sets. This is 
possible since the ' ' operators always occur in hermitian conjugate pairs [12]. 
Back-transformation of Eq. (3.17) with B yields 

W*HW = L + B(XBD)omB* + B(DX*B)omB*, L = LD, (3.18) 

defining a third hermitian intermediate Hamiltonian Lc which may be deter- 
mined from the shifted Bloch equation 

H W  = WL + WB(X~D)omB* + WB(DX*B)Om a*, L = L D (3.19) 

The way of constructing intermediate Hamiltonians as presented in this 
section can be characterized as forth-and-back transformation with shifts in- 
serted between the transformation steps. Equations (3.14, 16), interpreted in 
Hilbert space, may also be useful for CI-problems or generally matrix eigenvalue 
problems suffering from quasi-degeneracies, as, for these kinds of problems, the 
equations can be drastically simplified. 

4. Pilot application to the H:molecule 

1 + The excited Z~ states of the H 2 molecule are chosen as a pilot application for 
the intermediate Hamiltonian schemes a and b (Eqs. 2.8-10). These states 
belong to the most difficult test problems for Hoer formalisms, at least for medium 
and large basis sets, because their intruder problems are particularly severe (see 
e.g. [14, 27]). Taking the smallest non-trivial example, we aimed to calculate the 
ground and first excited ~Zg states "exactly", and it was found that the MS 
( l a  2, la2u, lag2ag, lag3ag) is sufficient to reach convergence over the whole 
range of internuclear distances, at least up to R = 8 ao. This MS can be classified 
as "isolated IMS" [ 11]. 
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The Schulman-Kaufman basis set of size (10s, 5p, ld) [28] was used (in 
uncontracted form; 60 groups) because this basis set is just sufficient to achieve 
"chemical accuracy" for the two lowest IZg+ states of H2. That basis set, also 
used by Sawatzki and Cederbaum [27] in investigations of the intruder problem, 
may be characterized as a "medium size" basis set. 

In line with our H2 calculations in [8, 14], for simplicity the bare nuclear 
Hamiltonian (BNH) is chosen as zeroth order Hamiltonian H0, leaving the full 
electron interaction as perturbation V. The molecular orbitals are generated by 
diagonalization of H0, hence the molecular orbital (MO) basis is formed by H~- 
orbitals. For  the wave operator, the normal order ansatz (see e.g. [1, 5]) 

W = {exp S} (4.1) 

is used in a particle-only framework (no holes) similar as it was done in [13]. 
With that specific choice of H 0' the cluster operator S does not contain 1-particle 
operators [8, 14], and for the 2-electron system considered here the ansatz (4.1) 
is simplified to 

W = 1 + 5;2 (4.2) 

i.e., the wave operator contains only the unit operator and the 2-particle cluster 
operator exciting from the MS to outside. The absence of a 1-particle cluster 
operator is the reason that in this example connectivity of Lc  cannot be missed, 
and that computationally the scheme becomes equivalent to a CI scheme in 
structure. 

In the ground state, I~Z +, the dominant configurations are 1% 2 and 10. 2 for 
large R (R ~> 5 a0), and la  2 for smaller R. The 2~Z~ - state - EF~Z + in spectro- 
scopic notation - is known to have two minima, the inner ("covalent") one at 
R = 1.91 a0 associated with the dominant configuration 10.g2%, and the outer 
("ionic") one at 4.39 a0 associated with 10.2 (and a large 10.g 2 component from the 
ionic configuration lo .2 + 10. 2) [29]. Both the minima are reproduced by the basis 
set, though at slightly shifted positions. To illustrate the composition of the 
states in terms of  MO configurations the components of the model functions as 
calculated with scheme a (scheme b is similar) are listed in Table 1. Near 
R = 8a0, the 2~Z~ - state is again dominated by lag20.g, since the first ionic 
dissociation channel associated with the configuration 10. 2 + lo .2 is higher in 
energy than the "covalent" H ( l s ) +  H(2s, 2p) dissociation limit. As becomes 
apparent from Table 1, extreme configuration mixing happens at large internu- 
clear distances. 

Thus, at least 1 ag, 1 au, and 2% have to be chosen as active orbitals, and we 
add 3% to this set to have log 3ag as a "buffer configuration" in the intermediate 
space. (For  calculations beyond R = 8 ao, one would have to include quite a few 
more configurations.) The dominant configurations of  the states of interest, here 
1 and 2~Z +, always comprise the main MS, and all other configurations 
spanning the intermediate MS are shifted by suitable operators that do not act 
on main functions. Accordingly, 30.g (i.e. the orbital energy of 30.g) is shifted for 
all R in the equation for $2, and additionally 1 cr u is shifted for small internuclear 
distances and 20.g for larger ones. The shift operator D is chosen to be of the 
form D = DxE x, with X representing the active orbitals to be shifted. 

In every cycle of  the iterative calculation of  the intermediate Hamiltonian 
L o the configurations of the main and the intermediate MS have to be 
decoupled from each other by the closed operator B which is assumed to be a 
2-particle operator throughout (other than the unit operator). Since one need not 
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Table 1. Configuration coefficients of  the four H 2 1Z, g + model states for 
selected internuclear distances R (in atomic units, ao, as calculated by the 
intermediate Hamiltonian scheme a (the figures for scheme b are similar) 

S. Koch 

1 + Z g Coefficients 
R [ao] States lag z ltr 2 1 trg 2trg 1 o'g 3o'g 

0.8 

1.4 

2.0 

3.2 

4.2 

6.0 

8.0 

1 0.971 -0 .042  0.225 --0.070 
2 -0 .118  -0 .009  0.767 0.630 
3 0.205 0.020 --0.659 0.723 
4 0.035 0.999 0.027 -0 .012  

1 0.969 -0 .088  0.221 -0 .068  
2 -0 .121  0.002 0.774 0.621 
3 0.197 0.001 -0 .640  0.743 
4 0.085 0.996 0.011 0.001 

1 0.963 -0 .156  0.210 -0 .068  
2 - 0.115 0.031 0.789 0.603 
3 0.158 -0 .052  -0 .589  0.791 
4 0.163 0.984 -0 .041 0.057 

1 0.920 - 0 . 3 5 2  0.159 0.072 
2 0.093 0.515 0.808 -0 .271  
3 0.353 0.812 -0 .407  -0 .225  
4 0.038 0.333 0.093 0.937 

1 0.843 -0 .521  0.090 0.100 
2 0.439 0.742 0.436 -0 .258  
3 -0 .237  --0.239 0.936 0.106 
4 0.073 0.299 -0 .022  0.951 

1 0.745 -0 .663  -0 .049  0.062 
2 0.573 0.622 0.496 0.197 
3 -0 .343  -0 .323  0.234 0.851 
4 --0.199 -0 .327  0.801 -0 .460  

1 0.715 -0 .698  -0 .019  0.030 
2 0.538 0.537 0.641 O. 112 
3 - 0 . 4 2 4  -0 .416  0.432 0.678 
4 0.235 0.289 -0 .551 0.747 

worry about connectivity in this example, B is simply defined as a matrix in the 
2-electron (singlet) space. The procedure of block-diagonalizing Lc, represented 
as a (non-hermitian) matrix in the 2-electron MS, is somewhat problematic 
because block-diagonalizing a non-hermitian matrix is not a standard procedure, 
and moreover the blocking scheme changes when R is varied. To avoid these 
complications for the time being, Lc, respectively its matrix representation, was 
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Table 2. Energies (in hartrees, h) of  H 2 I~,+ states for selected internuclear distances R (in atomic 
units, %) calculated by the intermediate Hamiltonian scheme a (Eqs. 2 .7-9)  and the approximate 
scheme b (Eq. 2.10). Full CI (configuration interaction) values are added for comparison. The states 
are characterized by their dominant  configuration(s). The shift values Dx (in h) are given in the first 
column in the lines of  the configurations that  are directly affected by them 

12;g + States Energies 
No. Conf. Scheme b Scheme a FCI 

R = 0.8 a o 
1 la~ --1.019784 --1.018922 
2 1%2% -0.441895 -0.435991 

D3~g= - 0 . 740  3 lGg3~g -0 .290732 -0 .251083 
DI~,, = -0 .680  4 la~ +0.567239 +0.567709 

R = 1.4 a o 
1 la~ -1 .173995 --1.173249 
2 IGg2% --0.695629 -0.691501 

D3~ = --0.612 3 lffg3~g --0.554435 --0.528094 
DI~,, = -0 .228  4 la~ -0 .087494 -0 .086824 

R = 2.0ao 
1 la~ - 1.136870 -1 .136548 
2 1%2% -0 .718347 -0.716931 

D 3 ~ =  --0.183 3 lag3Gg --0.590561 --0.581751 
Dlo,, = --0.064 4 la]  --0.413814 --0.412772 

R = 3.2 ao 

Dt~  = -0 .520  

R = 4.2 a o 

D3~ = - 0 . 3 0 0  

R = 6.0 a o 

D3~ = - 0 . 4 2 4  
D2~ = - 0 . 3 7 4  

R = 0.8 a o 

D2~ = - 0 . 3 6 2  
O3~g = - 0 . 4 5 2  

1 la~ -1 .044299 -1 .044290 
2 1%2% -0 .686288 --0.687712 
3 la~ -0 .654395 --0.651871 
4 1%3% --0.376962 -0 .371656 

1 1 ~  -1 .011638 -1 .0116!1  
2 lo~ -0 .710072 -0 .709140 
3 1%2% -0 .639636 -0 .639056 
4 lag3ag -0 .401969 -0 .397889 

1 la~,lG] -- 1.000619 -- 1.000675 
2 la ] ,  la~ --0.694119 --0.688357 
3 1%3% --0.574283 --0.550463 
4 1%2% --0.447952 -0 .440102 

-- 1.018922 
--0.435991 
--0.327342 
+0.504837 

-- 1.173249 
--0.691501 
--0.580145 
--0.095686 

-- 1.136548 
--0.716931 
--0.602381 
--0.459420 

--1.044290 
--0.687712 
--0.651871 
--0.400045 

-- 1.011611 
--0.709140 
--0.639056 
--0.423087 

-- 1.000675 
--0.688357 
--0.618709 
--0.480713 

1 l ~ ,  1~] -0 .999944 -0 .999979 --0.999979 
2 l%2ag ,  1 ~ ,  

1 ~  --0.658208 --0.654817 --0.654817 
3 1 % 3 % , . . .  --0.573146 --0.530494 --0.614410 
4 1%3% --0.457736 --0.452227 --0.516741 
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simply fully diagonalized by B. Thus all configurations in the MS are decoupled, 
and up to the 2-particle level, L c assumes the form of an index-diagonal operator 
analogous to D in Eq. (2.5). This brute force determination of B worked 
unexpectedly well, and, as it is very convenient, it deserves further investigations. 

1 + The calculated energies (in h -- hartree) of those four Zg states of H2 that 
have their dominant components in the MS are given in Table 2 for selected 
values of R. The 11;~ states are characterized by their consecutive number and by 
their dominant configuration(s), and one should note that the states 3 and 41S~ - 
do not necessarily correspond to the physical states with this count, mainly 
because the H~ orbitals used as MOs in the calculations allow only for a poor 
first order description of these higher H2 states. 

In the first column of Table 2, the shift operator components are listed in the 
rows of the configurations directly affected by them. The shifts- which are 
chosen to be fairly continuous though not optimal - are applied in scheme a and 
in the approximate scheme b in the way as defined in Sect. 2. 

As expected, scheme a always reproduces the full CI (FCI) results for the 
energies associated with non-shifted configurations, i.e. the main energies, 
whereas the intermediate energies are off by several 10 mh in positive direction. 
The values for scheme b are listed in order to demonstrate that the (uncorrected) 
shifts have only slight effects on the main energies; otherwise, the results from 
scheme b are not good enough to be of interest beyond this demonstration. 
Heully and Daudey [22] found the same weak dependence on the single shift 
parameter in their intermediate Hamiltonian scheme when applying it to the Be 
atom. This stability against specific choices for the shifts is very important for 
larger applications because the approximations required for large electronic 
systems will work only if the energies of interest are inherently nearly indepen- 
dent of the shifts. 

For the schemes a and b, convergence was always reached in about 20 
iterations for an accuracy of 10 .6 h. The stability of the iteration procedure is 
particularly remarkable considering the fact that non-optimized orbitals were 
used. 

5. Conclusions 

It has been demonstrated that, using the intermediate Hamiltonian scheme 
presented in this work, the calculation of the potential energy curve of an excited 
molecular state in the framework of the Fock space effective Hamiltonian 
formalism is possible, in spite of the presence of intruder states. (The application 
to the H2 molecule is meant to demonstrate only the viability of the method; 
naturally one would not normally calculate a 2-electron problem this way, but 
e.g. simply perform a full CI (configuration interaction) calculation.) Further- 
more, the formalism, which results in shifted Bloch equations as working 
equations, provides a general way to intermediate Hamiltonians, while preserv- 
ing the main features of the original effective Hamiltonian formalism: the particle 
number independence, the transparent access to connected diagram expansions, 
and the possibility of constructing (connected) hermitian effective Hamiltonians. 
Other advantages of the Fock space schemes proposed here are the flexibility in 
the choice of the shift terms and the applicability in both the complete and the 
incomplete model space cases. These results give rise to some optimism that the 
intruder problem plaguing the effective Hamiltonian approaches can be over- 
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come by generalizing the traditional approaches to intermediate Hamiltonian 
schemes. Since the techniques developed here are based on rather general 
principles, they can be expected to be helpful in calculating quasi-degenerate 
eigenvalues in any problem where this shift method is able to create a sufficiently 
large energy gap. 
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